Discrete Euler-Poincaré and Lie-Poisson equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrete Euler–Poincaré and Lie–Poisson equations

In this paper, discrete analogues of Euler–Poincaré and Lie–Poisson reduction theory are developed for systems on finite dimensional Lie groupsG with Lagrangians L : TG→ R that areG-invariant. These discrete equations provide ‘reduced’ numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G→ R...

متن کامل

m at h . N A ] 1 7 Se p 19 99 DISCRETE EULER - POINCARÉ AND LIE - POISSON EQUATIONS

In this paper, discrete analogues of Euler-Poincaré and Lie-Poisson reduction theory are developed for systems on finite dimensional Lie groups G with Lagrangians L : TG → R that are G-invariant. These discrete equations provide “reduced” numerical algorithms which manifestly preserve the symplectic structure. The manifold G×G is used as an approximation of TG, and a discrete Langragian L : G×G...

متن کامل

Explicit Lie-Poisson integration and the Euler equations.

We give a wide class of Lie-Poisson systems for which explicit, LiePoisson integrators, preserving all Casimirs, can be constructed. The integrators are extremely simple. Examples are the rigid body, a moment truncation, and a new, fast algorithm for the sine-bracket truncation of the 2D Euler equations.

متن کامل

Multidimensional Euler – Poincaré equations 1

Given a Lagrangian L : J 1 P → R, with P = M × G → M, invariant under the natural action of G on J 1 P, we deduce the analog of the Euler–Poincaré equations. The geometry of the reduced variational problem as well as its link with the Noether Theorem and an example are also given.

متن کامل

Lie - Poisson Deformation of the Poincaré Algebra

We find a one parameter family of quadratic Poisson structures on R 4 × SL(2, C) which satisfies the property a) that it is preserved under the Lie-Poisson action of the Lorentz group, as well as b) that it reduces to the standard Poincaré algebra for a particular limiting value of the parameter. (The Lie-Poisson transformations reduce to canonical ones in that limit, which we therefore refer t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Nonlinearity

سال: 1999

ISSN: 0951-7715,1361-6544

DOI: 10.1088/0951-7715/12/6/314